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Abstract. Within the framework of a simple model of car traffic on a one-lane highway, we
study the probability of the occurrence of car accidents when drivers do not respect the safety
distance between cars, and, as a result of the blockage during the timeT necessary to clear the
road, we determine the number of stopped cars as a function of car density. We give a simple
theory in good agreement with our numerical simulations.

1. Car accidents

In the past few years, many highway traffic models formulated in terms of cellular automata
have been studied, both in one [1–5] and two dimensions [6, 7]. For the one-dimensional
case, several topological variations of the basic model have been proposed, including
road crossing [10], road with junction [11] and two-lane highway [12–14]. Recently,
experimental features and complex spatiotemporal structures of real traffic flows have been
investigated [15, 16].

One of the simplest models is defined on a one-dimensional lattice ofL sites with
periodic boundary conditions. Each site is either occupied by a vehicle, or empty. The
velocity of each vehicle is an integer between 0 andvmax. If x(i, t) denotes the position of
the ith car at timet , the position of the next car ahead at timet is x(i + 1, t). With this
notation, the system evolves according to a synchronous rule given by

x(i, t + 1) = x(i, t)+ v(i, t + 1) (1)

where

v(i, t + 1) = min(x(i + 1, t)− x(i, t)− 1, x(i, t)− x(i, t − 1)+ a, vmax) (2)

is the velocity of cari at time t + 1. x(i + 1, t)− x(i, t)− 1 is the gap (number of empty
sites) between carsi and i + 1 at timet , x(i, t)− x(i, t − 1) is the velocityv(i, t) of car i
at time t , anda is the acceleration.a = 1 corresponds to the deterministic model of Nagel
and Schreckenberg [1], while the casea = vmax has been considered by Fukui and Ishibashi
[17]. In this last case, the evolution rule can be written as

x(i, t + 1) = x(i, t)+min(x(i + 1, t)− x(i, t)− 1, vmax). (3)

This is a cellular automaton rule whose radius is equal tovmax. The casea < vmax is a
second-order rule, that is, the state at timet+1 depends upon the states at timest andt−1.

We studied the probability for a car accident to occur when drivers do not respect the
safety distance. More precisely, if at timet , the velocityv(i+1, t) of car i+1 was positive,
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expecting this velocity to remain positive at timet + 1, the driver of cari increases the
safety velocityv(i, t+1) given by (2) by one unit, with a probabilityp. The evolution rule
(1) is then replaced by

if v(i + 1, t) > 0 thenx(i, t + 1) = x(i, t)+ v(i, t + 1)+1V (4)

where1V is a Bernoulli random variable which takes the value 1 with probabilityp and
zero with probability 1− p. If v(i + 1, t + 1) = 0, it is clear that this careless driving will
result in an accident.

When the car density,ρ, is less than the critical car densityρc = (1+vmax)
−1, the average

number of empty sites between two consecutive cars is larger thanvmax, the fraction,n0,
of stopped cars is zero and no accident can occur. Ifρ > ρc, the average velocity is less
than vmax, n0 increases withρ and careless driving will result in a number of accidents.
This number will, however, go to zero forρ = 1, since, in this case, all cars are stopped.
The probability for a car accident to occur should, therefore, reach a maximum for a car
density,ρ, betweenρc and 1.

Neglecting time correlations, we may determine an approximate probability for an
accident to occur. Letn be the number of empty sites between carsi and i + 1 at timet .
If the three conditions

06 n 6 vmax v(i + 1, t) > 0 v(i + 1, t + 1) = 0 (5)

are satisfied then cari will cause an accident at timet +1, with a probabilityp. Therefore,
the value,Pas , of the probabilityper siteandper time stepfor an accident to occur is given
by

Pas = pn0(1− n0)

vmax∑
n=0

ρ2(1− ρ)n = pρ(1− (1− ρ)vmax+1)n0(1− n0). (6)

Dividing by ρ, one obtains the probabilityper car and per time stepfor an accident to
occur

Pac = pρ(1− (1− ρ)vmax+1)n0(1− n0). (7)

Figure 1. The fraction of stopped cars,n0, as a function of the car density,ρ, for vmax= 3 and
a = 1. The full line represents the linear approximationn0 = (ρ − ρc)/(1− ρc).
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Figure 2. The probability,Pac, per car and per time step for an accident to occur as a function
of the car density,ρ, for vmax= 3 anda = 1. The full curve corresponds to the approximation
given by (9).

The simplest approximate expression for the fractionn0 of stopped cars as a function
of car density, satisfying the above-mentioned conditions, is

n0 = ρ − ρc
1− ρc . (8)

This approximation is rather crude. In particular, it neglects the fact thatn0 should depend
uponvmax. However, as shown in figure 1, forvmax= 3 anda = 1, this linear approximation
is in rather good agreement with our numerical results. Substituting (8) into (7) yields

Pac = pρ(1− (1− ρ)vmax+1)
(ρ − ρc)(1− ρ)
(1− ρc)2 . (9)

Figure 2 represents the probability,Pac, as a function ofρ determined numerically and its
value given by (9).

2. Stopped cars due to a blockage

As a result of an accident (or any other cause such as road works), the traffic is blocked
during the time,T , necessary to clear the road. For a givenT , the number,N(ρ), of blocked
cars is clearly an increasing function of the car densityρ. To determine the expression of
N , we shall distinguish between two regimes.

If ρ 6 ρc, the average car velocity isvmax. Since the average number of empty sites
between two consecutive cars is equal to

d(ρ) = (1− ρ)
ρ

(10)

the line of stopped cars increases by one unit during the time interval
vmax

d(ρ)
. (11)

Hence, during the timeT the numberN of blocked cars is given by

N(ρ) = T ρ(1− ρc)
(1− ρ)ρc . (12)
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Figure 3. The average number of blocked cars as a function of the car densityρ. The full
curve corresponds to the approximate expressions (12) and (13).

For ρ = 1
2 the average number of empty sites between two consecutive cars is equal to

d( 1
2) = 1, and the average number of blocked cars increases by one unit at each time step.

N(ρ) increases, therefore, fromT to T + 1 whenρ increases fromρc to 1
2 (note that the

first blocked site is occupied). Whenρ > 1
2, d(ρ) < 1, the average number of blocked cars

is then given by

N(ρ) = T + 1

d(ρ)
= T + ρ

1− ρ . (13)

Figure 3 represents the average number of blocked cars as a function of the car densityρ.
The agreement with the approximate expressions ofN(ρ), given by (12) and (13), is very
good.
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