Car accidents and number of stopped cars due to road blockage on a one-lane highway

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 303329
(http://iopscience.iop.org/0305-4470/30/10/012)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.71
The article was downloaded on 02/06/2010 at 04:18

Please note that terms and conditions apply.

Car accidents and number of stopped cars due to road blockage on a one-lane highway

N Boccara $\dagger \ddagger$, H Fukś \dagger and Q Zeng \dagger
\dagger University of Illinois at Chicago, Department of Physics, Chicago, IL 60607-7059, USA
\ddagger DRECAM/SPEC, CE Saclay, 91191 Gif sur Yvette, France

Received 27 February 1997

Abstract

Within the framework of a simple model of car traffic on a one-lane highway, we study the probability of the occurrence of car accidents when drivers do not respect the safety distance between cars, and, as a result of the blockage during the time T necessary to clear the road, we determine the number of stopped cars as a function of car density. We give a simple theory in good agreement with our numerical simulations.

1. Car accidents

In the past few years, many highway traffic models formulated in terms of cellular automata have been studied, both in one [1-5] and two dimensions [6, 7]. For the one-dimensional case, several topological variations of the basic model have been proposed, including road crossing [10], road with junction [11] and two-lane highway [12-14]. Recently, experimental features and complex spatiotemporal structures of real traffic flows have been investigated $[15,16]$.

One of the simplest models is defined on a one-dimensional lattice of L sites with periodic boundary conditions. Each site is either occupied by a vehicle, or empty. The velocity of each vehicle is an integer between 0 and $v_{\max }$. If $x(i, t)$ denotes the position of the i th car at time t, the position of the next car ahead at time t is $x(i+1, t)$. With this notation, the system evolves according to a synchronous rule given by

$$
\begin{equation*}
x(i, t+1)=x(i, t)+v(i, t+1) \tag{1}
\end{equation*}
$$

where
$v(i, t+1)=\min \left(x(i+1, t)-x(i, t)-1, x(i, t)-x(i, t-1)+a, v_{\max }\right)$
is the velocity of car i at time $t+1 . x(i+1, t)-x(i, t)-1$ is the gap (number of empty sites) between cars i and $i+1$ at time $t, x(i, t)-x(i, t-1)$ is the velocity $v(i, t)$ of car i at time t, and a is the acceleration. $a=1$ corresponds to the deterministic model of Nagel and Schreckenberg [1], while the case $a=v_{\max }$ has been considered by Fukui and Ishibashi [17]. In this last case, the evolution rule can be written as

$$
\begin{equation*}
x(i, t+1)=x(i, t)+\min \left(x(i+1, t)-x(i, t)-1, v_{\max }\right) . \tag{3}
\end{equation*}
$$

This is a cellular automaton rule whose radius is equal to $v_{\max }$. The case $a<v_{\max }$ is a second-order rule, that is, the state at time $t+1$ depends upon the states at times t and $t-1$.

We studied the probability for a car accident to occur when drivers do not respect the safety distance. More precisely, if at time t, the velocity $v(i+1, t)$ of car $i+1$ was positive,
expecting this velocity to remain positive at time $t+1$, the driver of car i increases the safety velocity $v(i, t+1)$ given by (2) by one unit, with a probability p. The evolution rule (1) is then replaced by

$$
\begin{equation*}
\text { if } v(i+1, t)>0 \quad \text { then } x(i, t+1)=x(i, t)+v(i, t+1)+\Delta V \tag{4}
\end{equation*}
$$

where ΔV is a Bernoulli random variable which takes the value 1 with probability p and zero with probability $1-p$. If $v(i+1, t+1)=0$, it is clear that this careless driving will result in an accident.

When the car density, ρ, is less than the critical car density $\rho_{c}=\left(1+v_{\max }\right)^{-1}$, the average number of empty sites between two consecutive cars is larger than $v_{\max }$, the fraction, n_{0}, of stopped cars is zero and no accident can occur. If $\rho>\rho_{c}$, the average velocity is less than $v_{\text {max }}, n_{0}$ increases with ρ and careless driving will result in a number of accidents. This number will, however, go to zero for $\rho=1$, since, in this case, all cars are stopped. The probability for a car accident to occur should, therefore, reach a maximum for a car density, ρ, between ρ_{c} and 1 .

Neglecting time correlations, we may determine an approximate probability for an accident to occur. Let n be the number of empty sites between cars i and $i+1$ at time t. If the three conditions

$$
\begin{equation*}
0 \leqslant n \leqslant v_{\max } \quad v(i+1, t)>0 \quad v(i+1, t+1)=0 \tag{5}
\end{equation*}
$$

are satisfied then car i will cause an accident at time $t+1$, with a probability p. Therefore, the value, $P_{a s}$, of the probability per site and per time step for an accident to occur is given by

$$
\begin{equation*}
P_{a s}=p n_{0}\left(1-n_{0}\right) \sum_{n=0}^{v_{\max }} \rho^{2}(1-\rho)^{n}=p \rho\left(1-(1-\rho)^{v_{\max +1}}\right) n_{0}\left(1-n_{0}\right) \tag{6}
\end{equation*}
$$

Dividing by ρ, one obtains the probability per car and per time step for an accident to occur

$$
\begin{equation*}
P_{a c}=p \rho\left(1-(1-\rho)^{v_{\max +1}}\right) n_{0}\left(1-n_{0}\right) \tag{7}
\end{equation*}
$$

Figure 1. The fraction of stopped cars, n_{0}, as a function of the car density, ρ, for $v_{\max }=3$ and $a=1$. The full line represents the linear approximation $n_{0}=\left(\rho-\rho_{c}\right) /\left(1-\rho_{c}\right)$.

Figure 2. The probability, $P_{a c}$, per car and per time step for an accident to occur as a function of the car density, ρ, for $v_{\max }=3$ and $a=1$. The full curve corresponds to the approximation given by (9).

The simplest approximate expression for the fraction n_{0} of stopped cars as a function of car density, satisfying the above-mentioned conditions, is

$$
\begin{equation*}
n_{0}=\frac{\rho-\rho_{c}}{1-\rho_{c}} . \tag{8}
\end{equation*}
$$

This approximation is rather crude. In particular, it neglects the fact that n_{0} should depend upon $v_{\text {max }}$. However, as shown in figure 1 , for $v_{\max }=3$ and $a=1$, this linear approximation is in rather good agreement with our numerical results. Substituting (8) into (7) yields

$$
\begin{equation*}
P_{a c}=p \rho\left(1-(1-\rho)^{v_{\max +1}}\right) \frac{\left(\rho-\rho_{c}\right)(1-\rho)}{\left(1-\rho_{c}\right)^{2}} \tag{9}
\end{equation*}
$$

Figure 2 represents the probability, $P_{a c}$, as a function of ρ determined numerically and its value given by (9).

2. Stopped cars due to a blockage

As a result of an accident (or any other cause such as road works), the traffic is blocked during the time, T, necessary to clear the road. For a given T, the number, $N(\rho)$, of blocked cars is clearly an increasing function of the car density ρ. To determine the expression of N, we shall distinguish between two regimes.

If $\rho \leqslant \rho_{c}$, the average car velocity is $v_{\max }$. Since the average number of empty sites between two consecutive cars is equal to

$$
\begin{equation*}
d(\rho)=\frac{(1-\rho)}{\rho} \tag{10}
\end{equation*}
$$

the line of stopped cars increases by one unit during the time interval

$$
\begin{equation*}
\frac{v_{\max }}{d(\rho)} \tag{11}
\end{equation*}
$$

Hence, during the time T the number N of blocked cars is given by

$$
\begin{equation*}
N(\rho)=T \frac{\rho\left(1-\rho_{c}\right)}{(1-\rho) \rho_{c}} . \tag{12}
\end{equation*}
$$

Figure 3. The average number of blocked cars as a function of the car density ρ. The full curve corresponds to the approximate expressions (12) and (13).

For $\rho=\frac{1}{2}$ the average number of empty sites between two consecutive cars is equal to $d\left(\frac{1}{2}\right)=1$, and the average number of blocked cars increases by one unit at each time step. $N(\rho)$ increases, therefore, from T to $T+1$ when ρ increases from ρ_{c} to $\frac{1}{2}$ (note that the first blocked site is occupied). When $\rho>\frac{1}{2}, d(\rho)<1$, the average number of blocked cars is then given by

$$
\begin{equation*}
N(\rho)=T+\frac{1}{d(\rho)}=T+\frac{\rho}{1-\rho} \tag{13}
\end{equation*}
$$

Figure 3 represents the average number of blocked cars as a function of the car density ρ. The agreement with the approximate expressions of $N(\rho)$, given by (12) and (13), is very good.

References

[1] Nagel K and Schreckenberg M 1992 J. Physique I 22221
[2] Nagel K and Herrmann H J 1993 Physica 199A 254
[3] Schadschneider A and Schreckenberg M 1993 J. Phys. A: Math. Gen. 26 L679
[4] Schreckenberg M, Schadschneider A, Nagel K and Ito N 1995 Phys. Rev. E 512939
[5] Vilar L C Q and de Souza A M C 1994 Physica 211A 84
[6] Biham O, Middleton A A and Levine D 1992 Phys. Rev. A 46 R6124
[7] Tadaki S and Kikuchi M 1994 Phys. Rev. E 504564
[8] Tadaki S and Kikuchi M 1995 J. Phys. Soc. Japan 644504
[9] Molera J M, Martinez F C, Cuesta J A and Brito R 1995 Phys. Rev. E 51175
[10] Ishibashi Y and Fukui M 1996 J. Phys. Soc. Japan 652793
[11] Benjamin S C, Johnson N F and Hui P M 1996 J. Phys. A: Math. Gen. 293119
[12] Nagatani T 1994 J. Phys. Soc. Japan 6352
[13] Nagatani T 1996 J. Phys. A: Math. Gen. 296531
[14] Rickert M, Nagel K, Schreckenberg M and Latour A 1996 Physica 231A 534
[15] Kerner B S and Rehborn H 1996 Phys. Rev. E 53 R1297
[16] B K S and Rehborn H 1996 Phys. Rev. E 53 R4275
[17] Fukui M and Ishibashi Y 1996 J. Phys. Soc. Japan 651868

